海量数据数据库(海量 数据库)

网站建设 56
今天给各位分享海量数据数据库的知识,其中也会对海量 数据库进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!海量数据的介绍 北京海量数据技术股份有限公司(股票代码:603138.SH)成立于2007年,是中国数据技术领航企业。十几年来,以“解决用户数据库问题”为己任,专注于数据库产品研发、销售和服务,拥有两大数据库产品:基于开源的“云图数据库(AtlasDB)”和自主可控的“海量数据库(Vastbase)”。

今天给各位分享海量数据数据库的知识,其中也会对海量 数据库进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

海量数据的介绍

北京海量数据技术股份有限公司(股票代码:603138.SH)成立于2007年,是中国数据技术领航企业。十几年来,以“解决用户数据库问题”为己任,专注于数据库产品研发、销售和服务,拥有两大数据库产品:基于开源的“云图数据库(AtlasDB)”和自主可控的“海量数据库(Vastbase)”。

海量数据始终坚持自主技术研发和创新,拥有国内顶尖研发团队。技术人员占公司总人数超过60%,其中,核心技术人员来自于Oracle、IBM、HP、Teradata等跨国科技公司。海量数据在北京、杭州、广州建有三个研发基地,一个省部级企业技术中心,在全国主要省会城市均设有分支机构,为2000多家大中型客户提供产品和服务,涵盖了运营商、金融、能源、电网、政府、制造业等重点行业。

海量数据建立了标准化的研发、服务和管理体系,执行严格的质量管控:以CMMI标准建立了研发管理体系、以ISO9001标准建立了质量保证体系、以ISO27000标准建立了信息安全管理体系、以ISO20000标准建立了信息技术服务管理体系、以GB29490标准建立了知识产权管理体系,成为用户可靠的数据领域合作伙伴。

“大数据”与“海量数据”有哪些区别

最根本的区别就是:

海量数据是一家公司,成立于2007年,是中国数据技术领航企业。

专注于数据库产品研发、销售和服务,拥有两大数据库产品:基于开源的“云图数据库(AtlasDB)”和自主可控的“海量数据库(Vastbase)”。

大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

扩展资料

大数据的影响:

以大数据、物联网驱动的新经济的含义,除了包括阿里、腾讯这些天生具有数字基因的企业崛起,更重要的是整个商业社会在数字化进程中,企业组织架构、商业模式、业务流程、管理方式的变革,大数据影响的绝不仅仅是技术。

数字经济不仅仅影响了人与人、人与物之间的连接,也改变了社会,改变了组织。

参考资料来源:凤凰网-大数据影响的绝不仅仅是技术

参考资料来源:百度百科-大数据

参考资料来源:百度百科-北京海量数据技术股份有限公司

海量空间数据存储

(一)空间数据存储技术

随着地理信息系统的发展,空间数据库技术也得到了很大的发展,并出现了很多新的空间数据库技术(黄钊等,2003),其中应用最广的就是用关系数据库管理系统(RDBMS)来管理空间数据。

用关系数据库管理系统来管理空间数据,主要解决存储在关系数据库中的空间数据与应用程序之间的数据接口问题,即空间数据库引擎(SpatialDatabase Engine)(熊丽华等,2004)。更确切地说,空间数据库技术是解决空间数据对象中几何属性在关系数据库中的存取问题,其主要任务是:

(1)用关系数据库存储管理空间数据;

(2)从数据库中读取空间数据,并转换为GIS应用程序能够接收和使用的格式;

(3)将GIS应用程序中的空间数据导入数据库,交给关系数据库管理。

空间数据库中数据存储主要有三种模式:拓扑关系数据存储模式、Oracle Spatial模式和ArcSDE模式。拓扑关系数据存储模式将空间数据存在文件中,而将属性数据存在数据库系统中,二者以一个关键字相连。这样分离存储的方式由于存在数据的管理和维护困难、数据访问速度慢、多用户数据并发共享冲突等问题而不适用于大型空间数据库的建设。而OracleSpatial实际上只是在原来的数据库模型上进行了空间数据模型的扩展,实现的是“点、线、面”等简单要素的存储和检索,所以它并不能存储数据之间复杂的拓扑关系,也不能建立一个空间几何网络。ArcSDE解决了这些问题,并利用空间索引机制来提高查询速度,利用长事务和版本机制来实现多用户同时操纵同一类型数据,利用特殊的表结构来实现空间数据和属性数据的无缝集成等(熊丽华等,2004)。

ArcSDE是ESRI公司开发的一个中间件产品,所谓中间件是一个软件,它允许应用元素通过网络连接进行互操作,屏蔽其下的通讯协议、系统结构、操作系统、数据库和其他应用服务。中间件位于客户机/服务器的操作系统之上,管理计算资源和网络通讯,并营造出一个相对稳定的高层应用环境,使开发人员可以集中精力于系统的上层开发,而不用过多考虑系统分布式环境下的移植性和通讯能力。因此,中间件能无缝地连入应用开发环境中,应用程序可以很容易地定位和共享中间件提供的应用逻辑和数据,易于系统集成。在分布式的网络环境下,客户端的应用程序如果要访问网络上某个服务器的信息,而服务器可能运行在不同于客户端的操作系统和数据库系统中。此时,客户机的应用程序中负责寻找数据的部分只需要访问一个数据访问中间件,由该中间件完成网络中数据或服务的查找,然后将查找的信息返回给客户端(万定生等,2003)。因此,本系统实现空间数据库存储的基本思想就是利用ArcSDE实现各类空间数据的存储。

目前,空间数据存储技术已比较成熟,出现了许多类似ArcSDE功能的中间件产品,这些软件基本上都能实现空间数据的数据库存储与管理,但对于海量空间数据的存储,各种软件性能差别较大。随着数据量的增长,计算机在分析处理上会产生很多问题,比如数据不可能一次完全被读入计算机的内存中进行处理。单纯依赖于硬件技术,并不能满足持续增长的数据的处理要求。因此需要在软件上找到处理海量数据的策略,并最终通过软硬件的结合完成对海量数据的处理。在海量数据存储问题上,许多专家从不同侧面进行过研究,Lindstrom在地形简化中使用了外存模型(Out-of-core)技术;钟正采用了基于数据分块、动态调用的策略;汪国平等人在研究使用高速网络进行三维海量地形数据的实时交互浏览中,采用了分块、多分辨率模板建立模型等方法。这些技术、方法已经在各自系统上进行了研究和实现。本系统采用的ArcSDE软件基本上也是采用分块模型的方法,具体存储和操作不需要用户过多了解,已经由ArcSDE软件实现。因此,对海量数据的存储管理,更需要从数据的组织方式等方面进行设计。塔里木河流域生态环境动态监测系统采集了大量的遥感影像、正射影像等栅格结构的数据,这些数据具有很大的数据量,为适应流域空间基础设施的管理需要,采取一种新的方式来管理、分发这些海量数据以适应各部门的快速浏览和管理需要。

(二)影像金字塔结构

影像数据库的组织是影像数据库效率的关键,为了获得高效率的存取速度,在数据的组织上使用了金字塔数据结构和网格分块数据结构。该技术主导思想如下:

(1)将数据库中使用到的纹理处理成为大小一致的纹理块;

(2)为每块纹理生成5个细节等级的纹理,分别为0、1、2、3、4,其中1级纹理通过0级纹理1/4压缩得到,2级纹理通过1级纹理1/4压缩得到,…,以此类推;

(3)在显示每个块数据之前,根据显示比例的大小,并以此决定该使用那一级的纹理;

(4)在内存中建立纹理缓冲池,使用LRU算法进行纹理块的调度,确保使用频率高的纹理调度次数尽可能少。

(三)影像数据压缩

影像数据压缩有无损压缩和有损压缩两个方法,具体采取哪种压缩方法需根据具体情况确定。对于像元值很重要的数据,如分类数据、分析数据等采用无损压缩(即LZ77算法),否则采用有损压缩(即JPEG算法)。通过对影像数据的压缩,一方面可以节约存储空间,另一方面可以加快影像的读取和显示速度。影像数据的压缩一般与构建金字塔同时进行,在构建影像金字塔过程中自动完成数据的压缩。

海量数据数据库的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于海量 数据库、海量数据数据库的信息别忘了在本站进行查找喔。

海量数据数据库 海量数据数据库 信创海量数据数据库地位海量数据数据库选型海量数据数据库支不支持飞腾龙芯路线海量数据数据库中标海量数据数据库怎么样海量数据数据库有落地项目海量数据数据库产品工程师海量数据用什么数据库海量数据 高斯数据库
扫码二维码